請輸入關鍵字
請輸入關鍵字
訂購
*國家
中國
美國
中國香港
中國澳門
中國台灣
阿爾巴尼亞
阿爾及利亞
阿根廷
阿拉伯聯合酋長國
阿魯巴
阿曼
阿塞拜疆
阿森鬆島
埃及
埃塞俄比亞
愛爾蘭
愛沙尼亞
安道爾
安哥拉
安圭拉
安提瓜和巴布達
奧地利
奧蘭群島
澳大利亞
巴巴多斯
巴布亞新幾內亞
巴哈馬
巴基斯坦
巴拉圭
巴勒斯坦領土
巴林
巴拿馬
巴西
白俄羅斯
百慕大
保加利亞
北馬裏亞納群島
貝寧
比利時
冰島
波多黎各
波蘭
波斯尼亞和黑塞哥維那
玻利維亞
伯利茲
博茨瓦納
不丹
布基納法索
布隆迪
朝鮮
赤道幾內亞
丹麥
德國
迪戈加西亞島
東帝汶
多哥
多米尼加共和國
多米尼克
俄羅斯
厄瓜多爾
厄立特裏亞
法國
法羅群島
法屬波利尼西亞
法屬圭亞那
法屬南部領地
梵蒂岡
菲律賓
斐濟
芬蘭
佛得角
福克蘭群島
岡比亞
剛果(布)
剛果(金)
哥倫比亞
哥斯達黎加
格恩西島
格林納達
格陵蘭
格魯吉亞
古巴
瓜德羅普
關島
圭亞那
哈薩克斯坦
海地
韓國
荷蘭
荷屬加勒比區
荷屬聖馬丁
黑山
洪都拉斯
基裏巴斯
吉布提
吉爾吉斯斯坦
幾內亞
幾內亞比紹
加拿大
加納
加納利群島
加蓬
柬埔寨
捷克
津巴布韋
喀麥隆
卡塔爾
開曼群島
科科斯(基林)群島
科摩羅
科索沃
科特迪瓦
科威特
克羅地亞
肯尼亞
庫克群島
庫拉索
拉脫維亞
萊索托
老撾
黎巴嫩
立陶宛
利比裏亞
利比亞
聯合國
列支敦士登
留尼汪
盧森堡
盧旺達
羅馬尼亞
馬達加斯加
馬恩島
馬爾代夫
馬耳他
馬拉維
馬來西亞
馬裏
馬其頓
馬紹爾群島
馬提尼克
馬約特
毛裏求斯
毛裏塔尼亞
美國本土外小島嶼
美屬薩摩亞
美屬維爾京群島
蒙古
蒙特塞拉特
孟加拉國
秘魯
密克羅尼西亞
緬甸
摩爾多瓦
摩洛哥
摩納哥
莫桑比克
墨西哥
納米比亞
南非
南極洲
南喬治亞和南桑威奇群島
南蘇丹
瑙魯
尼加拉瓜
尼泊爾
尼日爾
尼日利亞
紐埃
挪威
諾福克島
帕勞
皮特凱恩群島
葡萄牙
日本
瑞典
瑞士
薩爾瓦多
薩摩亞
塞爾維亞
塞拉利昂
塞內加爾
塞浦路斯
塞舌爾
沙特阿拉伯
聖巴泰勒米
聖誕島
聖多美和普林西比
聖赫勒拿
聖基茨和尼維斯
聖盧西亞
聖馬丁島
聖馬力諾
聖皮埃爾和密克隆群島
聖文森特和格林納丁斯
斯裏蘭卡
斯洛伐克
斯洛文尼亞
斯瓦爾巴和揚馬延
斯威士蘭
蘇丹
蘇裏南
所羅門群島
索馬裏
塔吉克斯坦
泰國
坦桑尼亞
湯加
特克斯和凱科斯群島
特裏斯坦-達庫尼亞群島
特立尼達和多巴哥
突尼斯
圖瓦盧
土耳其
土庫曼斯坦
托克勞
瓦利斯和富圖納
瓦努阿圖
危地馬拉
委內瑞拉
文萊
烏幹達
烏克蘭
烏拉圭
烏茲別克斯坦
希臘
西班牙
西撒哈拉
新加坡
新喀裏多尼亞
新西蘭
匈牙利
休達及梅利利亞
敘利亞
牙買加
亞美尼亞
也門
伊拉克
伊朗
以色列
意大利
印度
印度尼西亞
英國
英屬維爾京群島
英屬印度洋領地
約旦
越南
讚比亞
澤西島
乍得
直布羅陀
智利
中非共和國
*省份
*城市
*姓名
*電話
*單位
*職位
*郵箱
*請輸入驗證碼
*驗證碼
B-hGCGR mice
Strain Name
C57BL/6-Gcgrtm1(GCGR)Bcgen/Bcgen
Common Name  B-hGCGR mice
Background C57BL/6 Catalog number  110105
Aliases 
GGR, GL-R,G, GR
NCBI Gene ID
14527

mRNA expression analysis


from clipboard

Strain specific analysis of GCGR gene expression in WT and B-hGCGR mice by RT-PCR. Mouse GCGR mRNA was detectable only in liver cells of wild type C57BL/6 mice (+/+). Human GCGR mRNA was detectable only in homozygous B-hGCGR mice (H/H) , but not in wild type C57BL/6 mice (+/+). 


Protein expression analysis

from clipboard

Strain specific GCGR expression analysis in homozygous B-hGCGR mice by western blot. Kidney tissue was collected from wild type C57BL/6 mice (+/+) and homozygous B-hGCGR mice (H/H), and analyzed by western blot with anti-GCGR antibody. Mouse GCGR was detectable in wild type mice and homozygous B-hGCGR mice, as the antibody is crossly reactive with GCGR in human and mice. Human GCGR was exclusively detectable in homozygous B-hGCGR mice but not in wild type C57BL/6 mice.

Analysis of leukocytes cell subpopulation in B-hGCGR mice

from clipboard


Analysis of spleen leukocyte subpopulations by FACS
Splenocytes were isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in B-hGCGR mice


from clipboard
Analysis of spleen T cell subpopulations by FACS
Splenocytes were isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ T cells were gated for CD3+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell sub types in spleen. Values are expressed as mean ± SEM.

Analysis of leukocytes cell subpopulation in B-hGCGR mice
from clipboard
Analysis of subpopulation of leukocytes in lymph node by FACS
Lymph node was isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of the lymph node was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ T cells were used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, and NK cells in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in lymph node. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in B-hGCGR mice

from clipboard
Analysis of subpopulation of T cells in lymph node by FACS
Lymph node was isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of the lymph node was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ T cells were used for further analysis as indicated here. B. Results of FACS analysis. Percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.


Analysis of leukocytes cell subpopulation in B-hGCGR mice


from clipboard


Analysis of blood leukocyte subpopulations by FACS
Blood cells were isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of blood cells was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in B-hGCGR mice

from clipboard


Analysis of subpopulation of T cells in blood by FACS
Blood cells were isolated from female C57BL/6 and B-hGCGR mice (n=4, 7-week-old). Flow cytometry analysis of blood cells was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ T cells were used for further analysis as indicated here. B. Results of FACS analysis. Percent of CD4+ T cells, CD8+ T cells and Tregs in homozygous B-hGCGR mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hGCGR in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.

In vivo efficacy of anti-human GCGR antibody with B-hGCGR mice

from clipboard


from clipboard


Experimental schedule for in vivo efficacy of anti-human GCGR antibody. Anti-human GCGR antibody-crotedumab (in house) was administered by intraperitoneal injection once a week on days 1 to 8. Blood were collected for analysis of blood glucose, insulin, glucagon and lipid on the days showed in the schematic diagram and the table. 


In vivo efficacy of anti-human GCGR antibody with B-hGCGR mice


from clipboard

Anti-human GCGR antibody reduces blood glucose in male B-hGCGR mice. 
A. Random blood glucose from male mice before and at multiple time points after injection of crotedumab (in house) or isotype control antibody (n = 6). B. Body weights. C. OGTT on day 4. D. Area under the curve for the OGTT shown in C. Serum levels of (E) insulin, (F) glucagon on Day 7. Anti-GCGR antibody reduced the random blood glucose, fasting blood glucose and OGTT compared to the isotype antibody in B-hGCGR mice. Serum levels of insulin was reduced slightly and glucagon level was significantly increased in the antibody treated group. All of the results in B-hGCGR mice were similar to those in the wild-type C57BL/6. 
Results indicated that the regulatory function on blood glucose in humanized B-hGCGR mice was similar to the wild-type C57BL/6. Anti-human GCGR antibody was efficacious in controlling blood glucose in B-hGCGR mice. Values are expressed as mean ± SEM. OGTT, oral glucose tolerance test. 


In vivo efficacy of anti-human GCGR antibody with B-hGCGR mice


from clipboard

Anti-human GCGR antibody improved lipid metabolism in male B-hGCGR mice. 

Wild-type C57BL/6 and B-hGCGR mice were treated with crotedumab (in house) or isotype control antibody (n = 6). Blood were collected on Day 11 for triglycerides and cholesterol analysis. Serum levels of TG (A) and TC (B). HDL-C (C) and LDL-C (D) levels in serum. Serum levels of TG was reduced, while TC, HDL-C and LDL-C were increased in the anti-human GCGR antibody treated male mice group compared to the isotype control. All of the results in B-hGCGR mice were similar to those in the wild-type C57BL/6. Results indicated that lipid metabolism in humanized B-hGCGR mice was similar to the wild-type C57BL/6. Results indicated that anti-human GCGR antibody was efficacious in controlling blood lipid in male B-hGCGR mice. Values are expressed as mean ± SEM. TG, triglycerides; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol.  


In vivo efficacy of anti-human GCGR antibody with diet-induced obese (DIO) B-hGCGR mice




Anti-human GCGR antibody reduces blood glucose in DIO B-hGCGR mice. Male B-hGCGR mice were fed with high-fat diet throughout the study. Anti-human GCGR antibody crotedumab (in house) was administered by intraperitoneal injection on day 0 after diet-induced. Body weights, levels of blood glucose and hormones  were measured periodically (n = 10). A. Body weights. B. Random blood glucose from male mice before and at multiple time points after injection of crotedumab (in house) or isotype antibody. C. IPGTT on day 5. D. Area under the curve for the IPGTT shown in C. Serum levels of (E) insulin, (F) glucagon, (G) GLP-1 on Day 14 and Day 28. Anti-GCGR antibody significantly reduced body weight, random blood glucose and IPGTT compared to the isotype control in male DIO B-hGCGR mice. Serum levels of insulin, glucagon and GLP-1 were changed with dose-dependent. Results indicated that anti-human GCGR antibody was efficacious in controlling body weight and blood glucose in B-hGCGR mice. Values are expressed as mean ± SEM. IPGTT, Intraperitoneal glucose tolerance test. 


In vivo efficacy of anti-human GCGR antibody with diet-induced obese (DIO) B-hGCGR mice

Single doses of anti-human GCGR antibody treatment increased LDL-C and HDL-C in male DIO B-hGCGR mice. 
Male B-hGCGR mice were fed with high-fat diet throughout the study. Anti-human GCGR antibody crotedumab (in house) was administered by intraperitoneal injection on day 0 after diet-induced for 95 days (n = 10). Blood were collected on Day 28 for detecting the serum levels of TG (A), TC (B), HDL-C (C), LDL-C (D), ALT (E), AST (F). Serum levels of TG, ALT and AST in the three treatment groups were similar to that in the isotype group, while serum levels of HDL-C and LDL-C were significantly increased in the high dose treatment group compared to the isotype control. TC levels were also increased with dose-dependent, although with no significant difference. Values are expressed as mean ± SEM. TG, triglycerides; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol. ALT,  alanine transaminase; AST,  aspartate aminotransferase.


In vivo efficacy of anti-human GCGR antibody with diet-induced obese (DIO) B-hGCGR mice


Single doses of anti-human GCGR antibody treatment induced α-cell hyperplasia  in male DIO B-hGCGR mice. 
Male B-hGCGR mice were fed with high-fat diet throughout the study. Anti-human GCGR antibody crotedumab (in house) was administered by intraperitoneal injection on day 0 after diet-induced for 95 days (n = 10). Pancreases were collected on Day 28 for morphometric analysis. (A) Glucagon and insulin immunohistochemistry of representative pancreas sections. α cell area (B) and β cell area (C) measured in (A). (D) Islet number per pancreas section. Results showed that α cell area was increased with dose dependent. Anti-human GCGR antibody had no effect on β cell area or islet number per pancreas area. Values are expressed as mean ± SEM.