請輸入關鍵字
請輸入關鍵字
訂購
*國家
中國
美國
中國香港
中國澳門
中國台灣
阿爾巴尼亞
阿爾及利亞
阿根廷
阿拉伯聯合酋長國
阿魯巴
阿曼
阿塞拜疆
阿森鬆島
埃及
埃塞俄比亞
愛爾蘭
愛沙尼亞
安道爾
安哥拉
安圭拉
安提瓜和巴布達
奧地利
奧蘭群島
澳大利亞
巴巴多斯
巴布亞新幾內亞
巴哈馬
巴基斯坦
巴拉圭
巴勒斯坦領土
巴林
巴拿馬
巴西
白俄羅斯
百慕大
保加利亞
北馬裏亞納群島
貝寧
比利時
冰島
波多黎各
波蘭
波斯尼亞和黑塞哥維那
玻利維亞
伯利茲
博茨瓦納
不丹
布基納法索
布隆迪
朝鮮
赤道幾內亞
丹麥
德國
迪戈加西亞島
東帝汶
多哥
多米尼加共和國
多米尼克
俄羅斯
厄瓜多爾
厄立特裏亞
法國
法羅群島
法屬波利尼西亞
法屬圭亞那
法屬南部領地
梵蒂岡
菲律賓
斐濟
芬蘭
佛得角
福克蘭群島
岡比亞
剛果(布)
剛果(金)
哥倫比亞
哥斯達黎加
格恩西島
格林納達
格陵蘭
格魯吉亞
古巴
瓜德羅普
關島
圭亞那
哈薩克斯坦
海地
韓國
荷蘭
荷屬加勒比區
荷屬聖馬丁
黑山
洪都拉斯
基裏巴斯
吉布提
吉爾吉斯斯坦
幾內亞
幾內亞比紹
加拿大
加納
加納利群島
加蓬
柬埔寨
捷克
津巴布韋
喀麥隆
卡塔爾
開曼群島
科科斯(基林)群島
科摩羅
科索沃
科特迪瓦
科威特
克羅地亞
肯尼亞
庫克群島
庫拉索
拉脫維亞
萊索托
老撾
黎巴嫩
立陶宛
利比裏亞
利比亞
聯合國
列支敦士登
留尼汪
盧森堡
盧旺達
羅馬尼亞
馬達加斯加
馬恩島
馬爾代夫
馬耳他
馬拉維
馬來西亞
馬裏
馬其頓
馬紹爾群島
馬提尼克
馬約特
毛裏求斯
毛裏塔尼亞
美國本土外小島嶼
美屬薩摩亞
美屬維爾京群島
蒙古
蒙特塞拉特
孟加拉國
秘魯
密克羅尼西亞
緬甸
摩爾多瓦
摩洛哥
摩納哥
莫桑比克
墨西哥
納米比亞
南非
南極洲
南喬治亞和南桑威奇群島
南蘇丹
瑙魯
尼加拉瓜
尼泊爾
尼日爾
尼日利亞
紐埃
挪威
諾福克島
帕勞
皮特凱恩群島
葡萄牙
日本
瑞典
瑞士
薩爾瓦多
薩摩亞
塞爾維亞
塞拉利昂
塞內加爾
塞浦路斯
塞舌爾
沙特阿拉伯
聖巴泰勒米
聖誕島
聖多美和普林西比
聖赫勒拿
聖基茨和尼維斯
聖盧西亞
聖馬丁島
聖馬力諾
聖皮埃爾和密克隆群島
聖文森特和格林納丁斯
斯裏蘭卡
斯洛伐克
斯洛文尼亞
斯瓦爾巴和揚馬延
斯威士蘭
蘇丹
蘇裏南
所羅門群島
索馬裏
塔吉克斯坦
泰國
坦桑尼亞
湯加
特克斯和凱科斯群島
特裏斯坦-達庫尼亞群島
特立尼達和多巴哥
突尼斯
圖瓦盧
土耳其
土庫曼斯坦
托克勞
瓦利斯和富圖納
瓦努阿圖
危地馬拉
委內瑞拉
文萊
烏幹達
烏克蘭
烏拉圭
烏茲別克斯坦
希臘
西班牙
西撒哈拉
新加坡
新喀裏多尼亞
新西蘭
匈牙利
休達及梅利利亞
敘利亞
牙買加
亞美尼亞
也門
伊拉克
伊朗
以色列
意大利
印度
印度尼西亞
英國
英屬維爾京群島
英屬印度洋領地
約旦
越南
讚比亞
澤西島
乍得
直布羅陀
智利
中非共和國
*省份
*城市
*姓名
*電話
*單位
*職位
*郵箱
*請輸入驗證碼
*驗證碼
B-Tg(hLILRB1/hLILRB4) mice
Strain Name
C57BL/6N-Tg(CH17-401N15)1Bcgen/Bcgen
Common Name   B-Tg(hLILRB1/hLILRB4) mice 
Background C57BL/6N Catalog number  110878
Related Genes 
LILRB1: ILT2, LIR1, MIR7, PIRB, CD85J, ILT-2, LIR-1, MIR-7, PIR-B
LILRB4: ILT3, LIR5, CD85K, ILT-3, LIR-5 
NCBI Gene ID
11006

Protein expression analysis 
(LILRB1)


Protein expression analysis (F1)

from clipboard


Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Bone marrow derived dendritic cells from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg) were analyzed by flow cytometry with species-specific anti-human LILRB1 antibody. Human LILRB1 was detectable in dendritic cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

Protein expression analysis (F2)


from clipboard


Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Bone marrow derived dendritic cells from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg) were analyzed by flow cytometry with species-specific anti-human LILRB1 antibody. Human LILRB1 was detectable in dendritic cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

from clipboard


Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. T cells and B cells of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB1 was both detectable in T cells and B cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

from clipboard


Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Dendritic cells and macrophages of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB1 antibody. Human LILRB1 was both detectable in dendritic cells and macrophages from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

Protein expression analysis (F3)

from clipboard

Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. T cells and B cells of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB1 was both detectable in T cells and B cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

from clipboard


Strain specific LILRB1 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Dendritic cells and macrophages of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB1 antibody. Human LILRB1 was both detectable in dendritic cells and macrophages from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

Protein expression analysis 
(LILRB4)


Protein expression analysis (F1)


from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Bone marrow derived dendritic cells from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg) were analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was detectable in dendritic cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

Protein expression analysis (F2)


from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Bone marrow derived dendritic cells from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg) were analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was detectable in dendritic cells from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. T cells and B cells of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was not detectable in T cells of B-Tg(hLILRB1/hLILRB4) mice but detectable in B cells.

from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Dendritic cells and macrophages of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was both detectable in dendritic cells and macrophages from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.

Protein expression analysis (F3)

from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. T cells and B cells of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was not detectable in T cells of B-Tg(hLILRB1/hLILRB4) mice but detectable in B cells.

from clipboard


Strain specific LILRB4 expression analysis in transgenic B-Tg(hLILRB1/hLILRB4) mice by flow cytometry. Dendritic cells and macrophages of blood were collected from wild-type (+/+) and transgenic B-Tg(hLILRB1/hLILRB4) mice (Tg), and analyzed by flow cytometry with species-specific anti-human LILRB4 antibody. Human LILRB4 was both detectable in dendritic cells and macrophages from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice.


Leukocytes cell subpopulation and LILRB4 expression analysis in spleen, thymus, bone marrow and blood of B-Tg(hLILRB1/hLILRB4) mice (non-tumor bearing)

Summary of LILRB4 expression analysis in spleen, thymus, bone marrow and blood of B-Tg(hLILRB1/hLILRB4) mice


from clipboard

Analysis of leukocytes cell subpopulation in spleen

from clipboard


Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that LILRB1 and LILRB4 humanized does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in spleen

from clipboard


Analysis of spleen T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hLILRB1 and hLILRB4 does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.


Analysis of leukocytes cell subpopulation in thymus

from clipboard


Analysis of thymus leukocyte subpopulations by FACS. Thymocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the thymocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that LILRB1 and LILRB4 humanized does not change the overall development, differentiation or distribution of these cell types in thymus. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in thymus


from clipboard

Analysis of thymus T cell subpopulations by FACS. Thymocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the thymocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hLILRB1 and hLILRB4 does not change the overall development, differentiation or distribution of these T cell subtypes in thymus. Values are expressed as mean ± SEM.


Analysis of leukocytes cell subpopulation in bone marrow

from clipboard


Analysis of bone marrow leukocyte subpopulations by FACS. Bone marrow leukocyte were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the bone marrow leukocyte was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that LILRB1 and LILRB4 humanized does not change the overall development, differentiation or distribution of these cell types in bone marrow. Values are expressed as mean ± SEM.

Analysis of T cell subpopulation in bone marrow


from clipboard

Analysis of bone marrow T cell subpopulations by FACS. Bone marrow leukocyte were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the bone marrow leukocyte was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hLILRB1 and hLILRB4 does not change the overall development, differentiation or distribution of these T cell subtypes in bone marrow. Values are expressed as mean ± SEM.


Analysis of leukocytes cell subpopulation in blood

from clipboard

Analysis of blood leukocyte subpopulations by FACS. Blood leukocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the blood leukocytes were performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that LILRB1 and LILRB4 humanized does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.


Analysis of T cell subpopulation in blood

from clipboard


Analysis of blood T cell subpopulations by FACS. Blood leukocytes were isolated from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 8-week-old). Flow cytometry analysis of the blood leukocytes were performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD4+ T cells, CD8+ T cells and Tregs in B-Tg(hLILRB1/hLILRB4) mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hLILRB1 and hLILRB4 does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.




Blood chemistry of B-Tg(hLILRB1/hLILRB4) mice

from clipboard


Blood chemistry tests of B-Tg(hLILRB1/hLILRB4) mice. Serum from the C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=8, 9 week-old) was collected and analyzed for levels of indicators. The measurements of B-Tg(hLILRB1/hLILRB4) mice were similar to that in C57BL/6 mice, indicating that humanization does not change the health of related tissues, such as liver. Values are expressed as mean ± SEM.

Blood routine test in B-Tg(hLILRB1/hLILRB4) mice

from clipboard


Complete blood count (CBC). Blood from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=8, 9 week-old) was collected and analyzed for CBC. The measurements of B-Tg(hLILRB1/hLILRB4) mice were similar to that in C57BL/6 mice, indicating that humanization does not change blood cell composition and morphology. Values are expressed as mean ± SEM.

Relative LILRB4 mRNA expression in B-Tg(hLILRB1/hLILRB4) mice

from clipboard

Relative LILRB4 mRNA expression. Heart、liver、lung and kidney from female C57BL/6 and B-Tg(hLILRB1/hLILRB4) mice (n=3, 9 week-old) was collected and analyzed for q-PCR. Human LILRB4 mRNA was detectable in heart、liver、lung and kidney from B-Tg(hLILRB1/hLILRB4) mice but not wild-type mice. Values are expressed as mean ± SEM.




Tumor growth curve & Body weight changes

from clipboard


Subcutaneous homograft tumor growth of B16-F10 cells. B16-F10 cells (2x105) were subcutaneously implanted into B-Tg(hLILRB1/hLILRB4) mice (female, 10-11 week-old, n=5). Tumor volume and body weight were measured twice a week. (A) Average tumor volume ± SEM. (B)  Body weight (Mean± SEM). Volume was expressed in mm3 using the formula: V=0.5 X long diameter X short diameter2. As shown in panel A, B-Tg(hLILRB1/hLILRB4) mice were able to establish tumors in vivo and can be used for efficacy studies.

Analysis of tumor infiltrating lymphocytes (TILs)

from clipboard


The expression of hLILRB1 in CD4+ T cell, Treg cell and CD8+ T cell.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.
from clipboard


The expression of hLILRB1 in NK and MDSC (G-MDSC, M-MDSC).Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.
from clipboard


The expression of hLILRB1 in macrophage (M1, M2) and DC.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard


The expression of hLILRB4 in CD4+ T cell, Treg cell and CD8+ T cell.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard

The expression of hLILRB4 in NK cell and MDSC (G-MDSC, M-MDSC).Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard


The expression of hLILRB4 in macrophage (M1, M2) and DC.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

Tumor growth curve & Body weight changes



from clipboard



Subcutaneous homograft tumor growth of LLC1 cells. LLC1 cells (2x105) were subcutaneously implanted into B-Tg(hLILRB1/hLILRB4) mice (female, 10-11 week-old, n=5). Tumor volume and body weight were measured twice a week. (A) Average tumor volume ± SEM. (B)  Body weight (Mean± SEM). Volume was expressed in mm3 using the formula: V=0.5 X long diameter X short diameter2. As shown in panel A, B-Tg(hLILRB1/hLILRB4) mice were able to establish tumors in vivo and can be used for efficacy studies.

Analysis of tumor infiltrating lymphocytes (TILs)


from clipboard


The expression of hLILRB1 in CD4+ T cell, Treg cell and CD8+ T cell.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard



The expression of hLILRB1 in NK cell and MDSC (G-MDSC, M-MDSC).Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard


The expression of hLILRB1 in macrophage (M1, M2) and DC.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.


from clipboard

The expression of hLILRB4 in CD4+ T cell, Treg cell and CD8+ T cell.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.


from clipboard
The expression of hLILRB4 in NK cell and MDSC (G-MDSC, M-MDSC).Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

from clipboard

The expression of hLILRB4 in macrophage (M1, M2) and DC.Tumor cells  were harvested at the endpoint of experiment, and the lymphocytes were analyzed by flow cytometry.

In vivo efficacy of anti-human LILRB4 antibody


from clipboard


Antitumor activity of anti-human LILRB4 antibody in B-Tg(hLILRB1/hLILRB4) mice. (A) Anti-human LILRB4 antibody inhibited B-hLILRB4 luc EL4 lymphoma growth in B-Tg(hLILRB1/hLILRB4) mice. B-hLILRB4 luc EL4 cells (2x105) were injected by tail vein into B-Tg(hLILRB1/hLILRB4) mice (female, 6 week-old, n=6). Mice were grouped when total flux reached approximately 106 Ig, and treated with anti-hLILRB4 antibody in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-hLILRB4 antibody IO-202(in house) was efficacious in controlling tumor growth in B-Tg(hLILRB1/hLILRB4) mice. Values are expressed as mean ± SEM.

from clipboard