請輸入關鍵字
請輸入關鍵字
訂購
*國家
中國
美國
中國香港
中國澳門
中國台灣
阿爾巴尼亞
阿爾及利亞
阿根廷
阿拉伯聯合酋長國
阿魯巴
阿曼
阿塞拜疆
阿森鬆島
埃及
埃塞俄比亞
愛爾蘭
愛沙尼亞
安道爾
安哥拉
安圭拉
安提瓜和巴布達
奧地利
奧蘭群島
澳大利亞
巴巴多斯
巴布亞新幾內亞
巴哈馬
巴基斯坦
巴拉圭
巴勒斯坦領土
巴林
巴拿馬
巴西
白俄羅斯
百慕大
保加利亞
北馬裏亞納群島
貝寧
比利時
冰島
波多黎各
波蘭
波斯尼亞和黑塞哥維那
玻利維亞
伯利茲
博茨瓦納
不丹
布基納法索
布隆迪
朝鮮
赤道幾內亞
丹麥
德國
迪戈加西亞島
東帝汶
多哥
多米尼加共和國
多米尼克
俄羅斯
厄瓜多爾
厄立特裏亞
法國
法羅群島
法屬波利尼西亞
法屬圭亞那
法屬南部領地
梵蒂岡
菲律賓
斐濟
芬蘭
佛得角
福克蘭群島
岡比亞
剛果(布)
剛果(金)
哥倫比亞
哥斯達黎加
格恩西島
格林納達
格陵蘭
格魯吉亞
古巴
瓜德羅普
關島
圭亞那
哈薩克斯坦
海地
韓國
荷蘭
荷屬加勒比區
荷屬聖馬丁
黑山
洪都拉斯
基裏巴斯
吉布提
吉爾吉斯斯坦
幾內亞
幾內亞比紹
加拿大
加納
加納利群島
加蓬
柬埔寨
捷克
津巴布韋
喀麥隆
卡塔爾
開曼群島
科科斯(基林)群島
科摩羅
科索沃
科特迪瓦
科威特
克羅地亞
肯尼亞
庫克群島
庫拉索
拉脫維亞
萊索托
老撾
黎巴嫩
立陶宛
利比裏亞
利比亞
聯合國
列支敦士登
留尼汪
盧森堡
盧旺達
羅馬尼亞
馬達加斯加
馬恩島
馬爾代夫
馬耳他
馬拉維
馬來西亞
馬裏
馬其頓
馬紹爾群島
馬提尼克
馬約特
毛裏求斯
毛裏塔尼亞
美國本土外小島嶼
美屬薩摩亞
美屬維爾京群島
蒙古
蒙特塞拉特
孟加拉國
秘魯
密克羅尼西亞
緬甸
摩爾多瓦
摩洛哥
摩納哥
莫桑比克
墨西哥
納米比亞
南非
南極洲
南喬治亞和南桑威奇群島
南蘇丹
瑙魯
尼加拉瓜
尼泊爾
尼日爾
尼日利亞
紐埃
挪威
諾福克島
帕勞
皮特凱恩群島
葡萄牙
日本
瑞典
瑞士
薩爾瓦多
薩摩亞
塞爾維亞
塞拉利昂
塞內加爾
塞浦路斯
塞舌爾
沙特阿拉伯
聖巴泰勒米
聖誕島
聖多美和普林西比
聖赫勒拿
聖基茨和尼維斯
聖盧西亞
聖馬丁島
聖馬力諾
聖皮埃爾和密克隆群島
聖文森特和格林納丁斯
斯裏蘭卡
斯洛伐克
斯洛文尼亞
斯瓦爾巴和揚馬延
斯威士蘭
蘇丹
蘇裏南
所羅門群島
索馬裏
塔吉克斯坦
泰國
坦桑尼亞
湯加
特克斯和凱科斯群島
特裏斯坦-達庫尼亞群島
特立尼達和多巴哥
突尼斯
圖瓦盧
土耳其
土庫曼斯坦
托克勞
瓦利斯和富圖納
瓦努阿圖
危地馬拉
委內瑞拉
文萊
烏幹達
烏克蘭
烏拉圭
烏茲別克斯坦
希臘
西班牙
西撒哈拉
新加坡
新喀裏多尼亞
新西蘭
匈牙利
休達及梅利利亞
敘利亞
牙買加
亞美尼亞
也門
伊拉克
伊朗
以色列
意大利
印度
印度尼西亞
英國
英屬維爾京群島
英屬印度洋領地
約旦
越南
讚比亞
澤西島
乍得
直布羅陀
智利
中非共和國
*省份
*城市
*姓名
*電話
*單位
*職位
*郵箱
*請輸入驗證碼
*驗證碼
B-h4-1BB mice
Strain Name
C57BL/6-Tnfrsf9tm1(TNFRSF9)Bcgen/Bcgen
Common Name  B-h4-1BB mice
Background C57BL/6 Catalog number  110004
Related Genes 
TNFRSF9 (tumor necrosis factor receptor superfamily, member 9)
NCBI Gene ID
21942

mRNA expression analysis


from clipboard


Strain specific analysis of 4-1BB gene expression in WT and h4-1BB mice by RT-PCR. Mouse 4-1BB (Tnfrsf9) mRNA was detectable in splenocytes of wild-type (+/+) but not in homozygous (H/H) mice. Human 4-1BB (TNFRSF9) mRNA was detectable only in H/H but not in +/+ mice. 

Protein expression analysis

from clipboard


Strain specific 4-1BB protein expression analysis in C57BL/6 mice or homozygous B-h4-1BB mice by flow cytometry. Splenocytes were collected from wild type C57BL/6 mice (+/+) and homozygous B-h4-1BB mice (H/H)  that stimulated with anti-CD3ε in vivo, and analyzed by flow cytometry with species-specific anti-4-1BB antibodies. Mouse 4-1BB was detectable in C57BL/6 mice, while human 4-1BB was exclusively detectable in B-h4-1BB mice.

from clipboard


Strain specific 4-1BB protein expression analysis in C57BL/6 mice or homozygous B-h4-1BB mice by flow cytometry. Splenocytes were collected from wild type C57BL/6 mice (+/+) and homozygous B-h4-1BB mice (H/H)  that stimulated with anti-CD3ε in vivo, and analyzed by flow cytometry with species-specific anti-4-1BB antibodies. Mouse 4-1BB was detectable in C57BL/6 mice, while human 4-1BB was exclusively detectable in B-h4-1BB mice.

High dose of urelumab resulted in liver toxicity in B-h4-1BB mice

from clipboard

The concentration of ALT was more significantly increased after treated with high dose (20mg/kg) of urelumab (in house). 


from clipboard



Chronic inflammation (arrow) was observed in liver of B-h4-1BB mice which treated with high dose (20mg/kg) of urelumab (in house) for 21 days. While there was no microscopic changes in groups G1 and G3 which respectively treated with low dose (1mg/kg) of urelumab (in house) and high dose (20mg/kg ) of Isotype.


In vivo efficacy of anti-human 4-1BB antibodies

from clipboard


Antitumor activity of anti-human 4-1BB antibodies in B-h4-1BB mice. (A) Anti-human 4-1BB antibodies inhibited MC38 tumor growth in B-h4-1BB mice. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (female, 6-7 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with two anti-human 4-1BB antibodies with doses and schedules indicated in panel. (B) Body weight changes during treatment. As shown in panel A, anti-human 4-1BB antibodies were efficacious in controlling tumor growth in B-h4-1BB mice, demonstrating that the B-h4-1BB mice provide a powerful preclinical model for in vivo evaluation of anti-human 4-1BB antibodies. Values are expressed as mean ± SEM.

from clipboard


Antitumor activity of anti-human 4-1BB antibodies in B-h4-1BB mice. (A) Anti-human 4-1BB antibodies inhibited MC38 tumor growth in B-h4-1BB mice. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (male, 7-8 week-old, n=6). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with an anti-human 4-1BB antibody with doses and schedules indicated in panel. (B) Body weight changes during treatment. As shown in panel A, anti-human 4-1BB antibodies were efficacious in controlling tumor growth in B-h4-1BB mice, demonstrating that the B-h4-1BB mice provide a powerful preclinical model for in vivo evaluation of anti-human 4-1BB antibodies. Values are expressed as mean ± SEM.

from clipboard


Antitumor activity of anti-human 4-1BB antibodies in B-h4-1BB mice. (A) Anti-human 4-1BB antibodies inhibited MC38 tumor growth in B-h4-1BB mice. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (female, 6-7 week-old, n=6). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with anti-human 4-1BB antibody urelumab (in house)  with doses and schedules indicated in panel. (B) Body weight changes during treatment. As shown in panel A, anti-human 4-1BB antibodies were efficacious in controlling tumor growth in B-h4-1BB mice, demonstrating that the B-h4-1BB mice provide a powerful preclinical model for in vivo evaluation of anti-human 4-1BB antibodies. Values are expressed as mean ± SEM.

Tumor infiltrating lymphocytes (TILs) analysis

from clipboard

Tumor cells were harvested at the endpoint of experiment, then processed and analyzed by flow cytometry.


Ratio of tumor infiltrating lymphocytes (TILs)

from clipboard


Flow cytometry analysis of tumor infiltrating lymphocytes (TILs). Tumor cells were harvested at the endpoint of experiment (n=3). Flow cytometry analysis of the tumor infiltrating lymphocytes (TILs) were performed to assess cell number and proportion changes compared to the group with no anti-h4-1BB treated. CD45+ cells and CD3+ T cells were significantly increased when treated with anti-h4-1BB, while Treg cells were significantly reduced in the two groups treated with anti-h4-1BB compared to the control. Values are expressed as mean ± SEM.

In vivo efficacy of anti-human 4-1BB antibodies

from clipboard

from clipboard


Antitumor activity of anti-human 4-1BB antibodies in B-h4-1BB mice. (A) Anti-human 4-1BB antibodies inhibited MC38 tumor growth in B-h4-1BB mice. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (female, 6-7 week-old, n=5). Mice were grouped when tumor volume reached approximately 150 mm3, at which time they were treated with anti-human 4-1BB antibodies with doses and schedules indicated in panel. (B) Body weight changes during treatment. As shown in panel A, anti-human 4-1BB antibodies were efficacious in controlling tumor growth in B-h4-1BB mice, demonstrating that the B-h4-1BB mice provide a powerful preclinical model for in vivo evaluation of anti-human 4-1BB antibodies. Values are expressed as mean ± SEM.

Ratio of tumor infiltrating lymphocytes (TILs)

from clipboard


Flow cytometry analysis of tumor infiltrating lymphocytes (TILs). Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (female, 6-7 week-old, n=5). Mice were grouped when tumor volume reached approximately 150 mm3, at which time they were treated with anti-human 4-1BB antibodies with doses and schedules indicated in panel. Tumor cells were harvested at the endpoint of experiment. Flow cytometry analysis of the tumor infiltrating lymphocytes (TILs) were performed to assess cell number and frequency changes compared to the group with no anti-h4-1BB antibody treated. Leucocytes and total T cells were significantly increased when treated with anti-h4-1BB antibody for four times. Meanwhile, Urelumab may results more CD8+ T cells in the tumor microenvironment, while Treg cells were significantly reduced compared to control groups. Values are expressed as mean ± SEM.

from clipboard


Immunohistochemical (IHC) analysis of paraffin-embedded tumor tissure. Murine colon cancer MC38 cells were subcutaneously implanted into homozygous B-h4-1BB mice (female, 6-7 week-old, n=5). Mice were grouped when tumor volume reached approximately 150 mm3, at which time they were treated with anti-human 4-1BB antibodies with doses and schedules indicated in panel. Tumor tissure were harvested at the endpoint of experiment. Monoclonal antibodies specific for CD8 and Foxp3 are prepared and performed to assess cell number changes compared to the group with no anti-h4-1BB antibody treated by Immunohistochemical. Urelumab group shows more CD8+ T cells in the tumor microenvironment (Green), while Treg cells were significantly reduced compared to control groups (Red). Values are expressed as mean ± SEM.