請輸入關鍵字
請輸入關鍵字
訂購
*國家
中國
美國
中國香港
中國澳門
中國台灣
阿爾巴尼亞
阿爾及利亞
阿根廷
阿拉伯聯合酋長國
阿魯巴
阿曼
阿塞拜疆
阿森鬆島
埃及
埃塞俄比亞
愛爾蘭
愛沙尼亞
安道爾
安哥拉
安圭拉
安提瓜和巴布達
奧地利
奧蘭群島
澳大利亞
巴巴多斯
巴布亞新幾內亞
巴哈馬
巴基斯坦
巴拉圭
巴勒斯坦領土
巴林
巴拿馬
巴西
白俄羅斯
百慕大
保加利亞
北馬裏亞納群島
貝寧
比利時
冰島
波多黎各
波蘭
波斯尼亞和黑塞哥維那
玻利維亞
伯利茲
博茨瓦納
不丹
布基納法索
布隆迪
朝鮮
赤道幾內亞
丹麥
德國
迪戈加西亞島
東帝汶
多哥
多米尼加共和國
多米尼克
俄羅斯
厄瓜多爾
厄立特裏亞
法國
法羅群島
法屬波利尼西亞
法屬圭亞那
法屬南部領地
梵蒂岡
菲律賓
斐濟
芬蘭
佛得角
福克蘭群島
岡比亞
剛果(布)
剛果(金)
哥倫比亞
哥斯達黎加
格恩西島
格林納達
格陵蘭
格魯吉亞
古巴
瓜德羅普
關島
圭亞那
哈薩克斯坦
海地
韓國
荷蘭
荷屬加勒比區
荷屬聖馬丁
黑山
洪都拉斯
基裏巴斯
吉布提
吉爾吉斯斯坦
幾內亞
幾內亞比紹
加拿大
加納
加納利群島
加蓬
柬埔寨
捷克
津巴布韋
喀麥隆
卡塔爾
開曼群島
科科斯(基林)群島
科摩羅
科索沃
科特迪瓦
科威特
克羅地亞
肯尼亞
庫克群島
庫拉索
拉脫維亞
萊索托
老撾
黎巴嫩
立陶宛
利比裏亞
利比亞
聯合國
列支敦士登
留尼汪
盧森堡
盧旺達
羅馬尼亞
馬達加斯加
馬恩島
馬爾代夫
馬耳他
馬拉維
馬來西亞
馬裏
馬其頓
馬紹爾群島
馬提尼克
馬約特
毛裏求斯
毛裏塔尼亞
美國本土外小島嶼
美屬薩摩亞
美屬維爾京群島
蒙古
蒙特塞拉特
孟加拉國
秘魯
密克羅尼西亞
緬甸
摩爾多瓦
摩洛哥
摩納哥
莫桑比克
墨西哥
納米比亞
南非
南極洲
南喬治亞和南桑威奇群島
南蘇丹
瑙魯
尼加拉瓜
尼泊爾
尼日爾
尼日利亞
紐埃
挪威
諾福克島
帕勞
皮特凱恩群島
葡萄牙
日本
瑞典
瑞士
薩爾瓦多
薩摩亞
塞爾維亞
塞拉利昂
塞內加爾
塞浦路斯
塞舌爾
沙特阿拉伯
聖巴泰勒米
聖誕島
聖多美和普林西比
聖赫勒拿
聖基茨和尼維斯
聖盧西亞
聖馬丁島
聖馬力諾
聖皮埃爾和密克隆群島
聖文森特和格林納丁斯
斯裏蘭卡
斯洛伐克
斯洛文尼亞
斯瓦爾巴和揚馬延
斯威士蘭
蘇丹
蘇裏南
所羅門群島
索馬裏
塔吉克斯坦
泰國
坦桑尼亞
湯加
特克斯和凱科斯群島
特裏斯坦-達庫尼亞群島
特立尼達和多巴哥
突尼斯
圖瓦盧
土耳其
土庫曼斯坦
托克勞
瓦利斯和富圖納
瓦努阿圖
危地馬拉
委內瑞拉
文萊
烏幹達
烏克蘭
烏拉圭
烏茲別克斯坦
希臘
西班牙
西撒哈拉
新加坡
新喀裏多尼亞
新西蘭
匈牙利
休達及梅利利亞
敘利亞
牙買加
亞美尼亞
也門
伊拉克
伊朗
以色列
意大利
印度
印度尼西亞
英國
英屬維爾京群島
英屬印度洋領地
約旦
越南
讚比亞
澤西島
乍得
直布羅陀
智利
中非共和國
*省份
*城市
*姓名
*電話
*單位
*職位
*郵箱
*請輸入驗證碼
*驗證碼
B-hCD94/hNKG2A mice​
Strain Name
C57BL/6-Klrd1tm1(KLRD1)BcgenKlrc1tm1(KLRC1)Bcgen/Bcgen
Common Name  B-hCD94/hNKG2A mice
Background C57BL/6 Catalog number  121077
Related Genes 
CD94,KLRD1, NKG2A, KLRC1, CD159a
NCBI Gene ID
16643,16641

mRNA expression analysis


from clipboard


Strain specific analysis of CD94 and NKG2A gene expression in WT and homozygous B-hCD94/hNKG2A mice by RT-PCR. Mouse Cd94 and Nkg2a mRNA were detectable in splenocytes of wild-type (+/+) mice. Human CD94 and NKG2A mRNA were detectable only in the homozygous B-hCD94/hNKG2A, but not in +/+ mice. 


 Protein expression analysis in NK cells


from clipboard


Strain specific CD94 and NKG2A expression analysis in homozygous B-hCD94/hNKG2A mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hCD94/hNKG2A (H/H) mice, and analyzed by flow cytometry with species-specific CD94 or NKG2A antibody. Mouse CD94 and NKG2A were detectable in WT mice. Human CD94 and NKG2A were exclusively detectable in homozygous B-hCD94/hNKG2A but not WT mice. (Monalizumab was  used to detect the human NKG2A protein in WT and homozygous B-hCD94/hNKG2A)


Protein expression analysis in activated CD8+ T cells


from clipboard



Strain specific NKG2A expression analysis in homozygous B-hCD94/hNKG2A mice by flow cytometry. Splenocytes were collected from homozygous B-hCD94/hNKG2A (H/H) mice, and analyzed by flow cytometry with species-specific NKG2A antibody. Human NKG2A were exclusively detectable in activated CD8+ T cells of homozygous B-hCD94/hNKG2A mice after treated with mCD3e 24h. 


Protein expression analysis in activated CD8+ T cells

from clipboard



Strain specific CD94 expression analysis in homozygous B-hCD94/hNKG2A mice by flow cytometry. Splenocytes were collected from homozygous B-hCD94/hNKG2A (H/H) mice, and analyzed by flow cytometry with species-specific CD94 antibody. Human CD94 were exclusively detectable in activated CD8+ T cells of homozygous B-hCD94/hNKG2A mice after treated with mCD3e 24h.


Analysis of spleen leukocyte subpopulations in B-hCD94/hNKG2A mice

from clipboard



from clipboard


Analysis of splenic leukocyte subpopulations by FACS
Splenocytes were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hCD94/hNKG2A mice and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in spleen. Values are expressed as mean ± SEM.


Analysis of spleen leukocyte subpopulations in B-hCD94/hNKG2A mice

from clipboard


Analysis of splenic T cell subpopulations by FACS
Splenocytes were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hCD94/hNKG2A and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.


Analysis of lymph node leukocyte subpopulations in B-hCD94/hNKG2A mice

from clipboard


from clipboard


Analysis of lymph node leukocyte subpopulations by FACS
Lymph node were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hCD94/hNKG2A mice and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in lymph node. Values are expressed as mean ± SEM.


Analysis of lymph node leukocyte subpopulations in B-hCD94/hNKG2A mice


from clipboard


Analysis of lymph node T cell subpopulations by FACS
Lymph node were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hCD94/hNKG2A and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.


Analysis of blood leukocyte subpopulations in B-hCD94/hNKG2A mice

from clipboard



from clipboard


Analysis of blood leukocyte subpopulations by FACS
Blood were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry to assess leukocyte subpopulations. (A) Representative FACS plots gated on single live CD45+ cells for further analysis. (B) Results of FACS analysis. Percentages of T, B, NK cells, monocytes/macrophages, and DC were similar in homozygous B-hCD94/hNKG2A mice and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation, or distribution of these cell types in blood. Values are expressed as mean ± SEM.


Analysis of blood leukocyte subpopulations in B-hCD94/hNKG2A mice

from clipboard


Analysis of blood T cell subpopulations by FACS. Blood were isolated from female C57BL/6 and B-hCD94/hNKG2A mice (n=3, 6 weeks-old) and analyzed by flow cytometry for T cell subsets. (A) Representative FACS plots gated on TCRβ+ T cells and further analyzed. (B) Results of FACS analysis. Percentages of CD8+, CD4+, and Treg cells were similar in homozygous B-hCD94/hNKG2A and C57BL/6 mice, demonstrating that introduction of hCD94/hNKG2A in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.


In vivo efficacy of anti-human NKG2A antibody

from clipboard

Antitumor activity of anti-human NKG2A antibody in B-hCD94/hNKG2A mice. (A) Anti-human NKG2A antibody inhibited hHLA-E MC38 tumor growth in B-hCD94/hNKG2A mice. Murine colon cancer hHLA-E MC38 cells were subcutaneously implanted into homozygous B-hCD94/hNKG2A mice (female, 6-7 week-old, n=5). Mice were grouped when tumor volume reached approximately 100 mm3, and treated with anti-hNKG2A antibody at doses and schedules in panel A. (B) Body weight changes during treatment. As shown in panel A, anti-human NKG2A antibody (monalizumab, in house) were efficacious in controlling tumor growth in B-hCD94/hNKG2A mice, demonstrating they provide a powerful preclinical model for in vivo evaluation of anti-human NKG2A antibody. Values are expressed as mean ± SEM.


In vivo efficacy of anti-human NKG2A antibody


from clipboard


Combination therapy of Tecentriq and Monalizumab

from clipboard


Anti-tumor activity of tecentriq and monalizumab in B-hCD94/hNKG2A mice. (A) NKG2A antibody monalizumab(from partner) combined with PD-L1 antibody tecentriq(from partner) inhibited B-hHLA-E MC38 tumor growth in B-hCD94/hNKG2A mice. Murine colon cancer B-hHLA-E MC38 cells were subcutaneously implanted into homozygous B-hCD94/hNKG2A mice (female, 6-7 week-old, n=6). Mice were grouped when tumor volume reached approximately 100 mm3, at which time they were treated with antibodies at schedules in panel A. (B) Body weight changes during treatment. As shown in panel A, the combination of monalizumab and tecentriq showed more inhibitory effects than individual groups, demonstrating they provide a powerful preclinical model for in vivo evaluating combination therapy for PD-L1 and NKG2A. Values are expressed as mean ± SEM.